

Competitive Programming

Pre-requisites

• Basic Knowledge of Programming (any language)

Course Highlights

- Dedicated live doubt solving sessions by mentor.
- 24x7 Support on Teams for your doubt solving.
- Topic Wise Real World Competitive Programming Practice Questions
- Easy to Hard Problem sets from leet code, hacker earth, hacker rank.
- Cover all corner test cases/invalid inputs for possible undetectable errors.
- Cracking Coding Interviews

Part-1: Python Programming

Part-2: Data Structure & Algorithms

Part-3: Competitive Problem Solving

Python Programming

- Writing and Executing Scripts in Python
- Input Output Operations in Python
- Data Type and Data Structures in Python
 - o Number, String, List, Tuple, Dictionary, Set, Frozen Set
- Operators in Python
 - o Arithmetic, Comparison, Logical, Bitwise, Membership, Identity
- Control Statements in Python
 - o If-else, nested if else, multiple condition in python
- Loops in Python
 - For, While Loop, continue, break, else statement with loop

- Functions in Python
 - o Scope, Recursion, Decorators, Generators, lazy Evaluation, map, lambda, reduce, filter
- OOPs using Python
 - o Class, Object, Inheritance, Duck Typing, Abstraction, Encapsulation, Abstract Class
- Exception Handling in Python
- Standard Library of Python

Data Structures and Algorithms

- Introduction Data Structure and Algorithms
 - Operations, Concepts, Design Principle
- Algorithms: Complexity, Time Space Tradeoff
- Mathematical Notation and Functions
- Complexity of Algorithms
- String Processing
- Arrays
 - One, Two, Three dimensional Arrays
 - Polynomial Representation, addition
 - Sparse Matrix & Matrix Operations
 - Array Operations
- Linked Lists
 - Singly, Doubly and Circular Link List
 - o Polynomial Representation
 - o Operations of Chains
- Stack, Ques, Recursion
 - o Stack using Array & Link List
 - Arithmetic Expressions; Polish Notation
 - Applications of Stacks
 - Recursion, Towers of Hanoi
 - Recursive Procedures by Stacks
 - Ques, Evaluation of Expressions
 - Linked Representation of Ques
 - Deques & Priority Queues
- Hashing
 - Hash Tables, Hash functions
 - Dynamic Hashing
 - Dynamic Hashing using Directories
 - Dynamic Hashing without Directories
- Trees
 - o Binary Tree Representation in Python
 - Binary Tree Traversals Inorder, Preorder, Postorder
 - o Searching and Inserting in Binary Search Tree
 - BFS and DFS

- Deleting in a Binary Search Tree
- AVL Search Tree, B-tree
- Huffman's Algorithm
- o Red-Black Tree, Rotations, Insertion, Deletion
- Heaps
 - Binomial Heap, Operations
 - Fibonacci Heap
 - Symmetric Min-Max Heaps
- Graphs Theory
 - Sequential Representation of Graphs
 - o Adjacency Matrix, Path Matrix
 - Wars hall's Algorithm, Shortest Path
 - Traversal of a Graph
 - o Depth First Search, Breadth First Search, Spanning Trees
 - Minimum Cost Spanning Trees Kruskal's, Prim's, Sollin's Algorithm
 - o Dijkstra's algorithm
 - Activity Networks, AOV (activity on vertex) and AOE (activity on edge)
- Sorting & Searching Algorithms
 - Insertion Sort
 - Quick Sort
 - Merge Sort
 - Heap Sort
 - Radix Sort
 - Bucket Sort
- Dynamic Programming
 - Assembly-line scheduling
 - Matrix-chain multiplication
 - Elements of dynamic programming
 - Longest Common Subsequence (LCS)
 - o Optimal Binary Search Trees
- Greedy Algorithms
 - An activity-selection problem
 - Elements of the greedy strategy
 - Huffman codes
 - A task scheduling Problem

Competitive Problem Solving

- Python Programming Competitive Problem Solving
- Competitive Questions on Graph Theory, Disjoint Set Union, Minimum Spanning Tree
- Segment Tree, String Algorithms, Trees Based Competitive Questions
- Competitive Questions Based on Graph Coloring, Network Flow